Antineutrino Monitoring of Reactors Theoretical Feasibility Studies

Michael Nieto, Bill Wilson, Holly Trellue, AH

Los Alamos National Laboratory

Addressing Questions Raised at the International IAEA meeting Vienna 2003

- Can antineutrinos be used to monitor Pu content of reactor?
- Are undeclared fuel removals/diversions detectible with neutrinos?
- Are other fuels distinguishable from Lightly enriched Uranium (LEU), e.g., ²³²Th-²³³U
- Can neutrinos verify the burnup of MOX-Pu fuel?
- Can neutrinos determine the isotopic content of spent fuel?
- Can neutrinos detect the movement/diversion of spent fuel?

Antineutrino Spectra for Different Fissionable material distinguishable

EST.1943

Approximately 10% of the beta decays have unknown end-point energies E₀
Use continuous theory of beta-decay or energy-independent scaling

Los Alar

Reactor Burn Calculations using LANL code Monteburns

Monte Carlo burnup code that links MCNP transport with isotope production/depletion code CINDER'90 (or ORIGEN2.1)

- ➤ Accurate reactor modeling for a broad class of fuels.
 - Spatial and temporal power, fuel composition, radiation and decay heating
- > Detailed characterization of removed fuel content and emissions.
 - Fuel proliferation index, weapons usability, decay signatures for safeguards

FST 1943

Antineutrino Spectrum for Different Fuel Diversion Scenarios

Start of cycle:

1/3 fresh 2.7% enriched 1/3 irradiated 1 year 1/3 irradiated 2 years

End of cycle:

1/3 irradiated 1 yr, 2 yr, 3 yr

Diversion of 10% (> Critical Mass):

37% fresh 2.7% enriched 33% 1 yr, 30% 2 yr

Gross Violation (diversion of 1/3):

2/3 fresh 2.7% enriched 1/3 irradiated 1 yr

Antineutrino Monitoring of Th-U-233 reactors - Advanced Fuel cycle concept

²³⁸U + n → ²³⁹U → ²³⁹Np + β⁻ + ν → ²³⁹Pu + β⁻ + ν

$$\sigma$$
=1.73 b

232Th + n → ²³³Th → ²³³Pa + β⁻ + ν → ²³³U + β⁻ + ν
 σ =4.62 b

Advantages of Th-U fuel cycle:

- Abundance of Th 3 times than U
- Reduced proliferation hazard
- Reduced radiological hazard

Main Disadvantage:

•Requires fissile seed (²³⁵U) to initiate cycle

<u>Seed:</u> LEU (238 U + $^{2.7}$ % 235 U)

Blanket: ThO₂ or ThO₂ + 20% LEU

Proliferation Implications for Th-U Cycle

Weapons usability of ²³³U determined by the proliferation index

Proliferation Index:

$$PI = _{233}U + 0.6 _{235}U$$
 < 12% if non-weapons usable

$$U_{total}$$

PI typically requires about 20% of Th0₂ rods to contain LEU (²³⁸U + 2.6% ²³⁵U)

Examine antineutrino spectra differences for Th-U fuels comply/violate PI

Derived β/ν spectra for ²³²Th and ²³³U from ENDF/B-VI data

²³²Th spectrum very similar to ²³⁸U - enhanced ²³³U spectrum very similar to ²³⁹P - suppressed

Reactor Burn calculation for Th-U cycle

- a. Th0₂+LEU PI compliant
- b. ThO₂ to max weapons usability

- ➤ Fast in-growth of ²³³U in both cases, but especially for pure Th0₂
- ➤ Burn for the purposes of producing weapons usable ²³³U very distinctive

Antineutrino Spectra for Th-233U cycles

Number of ν /fission drops steadily as 233 U grows Considerably faster drop than seen from in-growth of Pu in PWR LEU case

Situation Complicated by Change in Power Density for Th-U Burn

- For PWR LEU reactors power density remains approximately constant
- For Th-U reactors the power would be shared between LEU seed assemblies and Th-U blanket assemblies.
- Power in Th-U-233 assemblies can change significantly over several cycles and be compensated for by a change in the LEU power

Need detailed model of change in power density in order to determine expected change in antineutrino spectrum

Burning of Weapons-grade and Reactor-grade MOX Pu

Schemes to burn MOX fuel to burn Pu $U0_2 + 5.3\% PuO_2$

Starting Isotopics for Weapons- and Reactor-grade fuels

w%	Weapons-Grade	Reactor-Grade
U-235	0.67897%	0.67897%
U-238	93.622%	93.622%
Pu-238	-	0.2026%
Pu-239	5.0%	2.6527%
Pu-240	0.3%	1.373%
Pu-241	-	0.5345%
Pu-242	-	0.5372%

Antineutrino Spectra Emitted for Pu MOX Fuels Clearly Distinguishable

Number Antineutrinos/fission *increase* with burn for MOX PU

May be able to distinguish grade of fuel from power density

Monitoring Spent Fuel

The antineutrino source describes total activity well -essentially all decays are β -decay.

Calculated activity of discharged fuel drops to:

7.5% in the 4 weeks

1.5% in a year

0.2% in 10 years

Fuel assembly would have to be moved far from reactor

Radioactivity at WIPP Carlsbad, NM

WIPP designed to store ~ 9000 Mtonnes of radioactive waste

Presently 25% full

Radioactivity includes
Antineutrinos
Betas
Delayed photons
Alphas
Delayed neutrons

WIPP antineutrino and beta spectra Dominated by 241Pu 18 keV β-decay

Summary

- For LEU PWR gross changes in fuel content likely to be observable
- Diversions of a critical mass of Pu from GW LEU PWR difficult to detect
- Th-U233 fuels distinguishable from LEU
- Violations of the proliferation index for Th-U233 quite distinguishable. important for monitoring the proposed Indian breeder reactor program.
- Burning of MOX Pu fuels also distinguishable
- Antineutrino spectrum from spent fuel peaks at very low energies

